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Analysis of Multiconductor Transmission
Lines of Arbitrary Cross Section
in Multilayered Uniaxial Media
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Abstract— A mixed-potential electric field integral equation
is formulated and applied in conjunction with the method of
moments to analyze a transmission-line system consisting of
multiple conducting strips of arbitrary cross section embed-
ded in a stratified medium with or without top and/or bottom
ground planes. Each layer of the medium is possibly uniaxially
anisotropic, with its optical axis perpendicular to the dielectric
interfaces. Computed dispersion curves and modal currents are
presented and, when possible, are compared with data available
in the literature.

I. INTRODUCTION

ECENT advances in integrated circuit technology have

made microstrips, striplines, coplanar strips, and similar
wave-guiding structures attractive not only in microwave and
millimeter-wave applications, but also in high-speed digital
computers. The conductors used as interconnects between
VLSI devices may be very close to one another, which
necessitates treating them as a single transmission line capable
of supporting several modes, rather than several isolated trans-
mission lines. The interconnects in modern microwave and
millimeter-wave integrated circuits tend to have trapezoidal
cross sections due to etching undercuts or as a result of
the epitaxial growth process [1], [2], and cannot always be
considered infinitely thin. These interconnects are supported by
a dielectric substrate, which often exhibits uniaxial anisotropy,
introduced in the manufacturing process [3].

Many numerical procedures have been successfully applied
in the past two decades to obtain frequency-dependent char-
acteristics of microstrips and striplines, but most of them
are only applicable to (or optimized for) planar conducting
strips of zero thickness (cf. [4], [S]-[17], to name just a
few). Relatively few papers have considered laterally open
microstrip structures with conductors of other cross section
shapes, such as rectangular [18], trapezoidal [19], [20], circular
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[21], [22], or rectangular with semi-circular edges [23]. The
concept of equivalent width has often been employed to
approximately take into account the strip thickness [24].
However, it has recently been demonstrated, using a rigorous
mixed-potential integral equation (MPIE) approach [19], that
the dispersion curve for a finite-thickness microstrip lies below
that of a microstrip with zero thickness, which is opposite to
what is observed when the concept of equivalent width is used.

In this paper, we use an MPIE approach, which was
originally developed for objects in isotropic media [25], [19],
[26], and recently extended to objects in uniaxial media [27],
to analyze a transmission-line system composed of multiple
conductors of finite thickness and arbitrary cross section,
embedded in a medium consisting of an arbitrary number
of planar, possibly uniaxially anisotropic, dielectric layers.
Computed dispersion curves and modal currents for bound
modes are presented and, when possible, are compared with
data available in the literature.

II. FORMULATION

The cross-sectional view of the structure under considera-
tion is shown in Fig. 1. The medium consists of N planar,
homogeneous dielectric layers, with the interfaces parallel to
the zy plane. Each layer, say the nth, is characterized by per-
meability ., and by transverse and longitudinal permittivities
€n and €., respectively, all relative to free space. The top
layer of the medium may extend to +oco along the z axis,
or be shielded by a ground plane made of a perfect electric
conductor (PEC). Similarly, the bottom layer may extend to
—oo along the z axis, or be shielded by a PEC ground plane.
There are N, PEC strips embedded in the layered medium, all
uniform and of infinite extent along the y axis, but of arbitrary
cross section shape. An e/“* time dependence is assumed and
suppressed throughout.

Since we are interested in modes propagating in the y direc-
tion, we may assume that the phase factor ¢ ~7%¥ is common to
all the fields and currents, where 3 is the propagation constant
to be determined. Hence, we may express the surface current
density as

J(r) = J(£)e=9PY 4]

where £ is the arc-length coordinate on the contours of the
conductor cross sections. By enforcing the condition that the
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Fig. 1. Cross-sectional view of a multiconductor transmission line embedded

in a stratified uniaxial medium.

tangential electric field must vanish at the surface of the
conductors, we obtain an electric field integral equation (EFIE)
of the form

N, _
i xy / G¥ (z, 20!, ) - J() Al =0,
i=1v L

reLl,n=12-.- N,

&)

where GF7(z, 2|2/, 2'), with z = z(¢) and z = z(£), is the
electric field dyadic Green’s function of the layered medium
[27], and where i, denotes an outward unit vector normal
to the boundary L, of the nth conductor. In the above and
throughout, primed quantities denote source coordinates, unit
vectors are distinguished by carets, and dyadics by double
underlines.

The severe source-region singularity of the kernel of the
EFIE (2) makes it unsuitable for a direct application of the
method of moments [28], [29]. Hence, we first transform it
into the MPIE form,

N, :
i X Y {Ai(w,2) + (Ve ~ §56)Pi(z, 2)} = 0,
reLnn=12-N. 3)

where V; is the transverse (to y) part of the operator nabla,
and where

Ai(z,2) = / KA(z,2la, ) J(W)dl (4
and B
e, = [ Koe 2l )(V)~ 356)
(&) de 5)

are the magnetic vector potential and the electric scalar po-
tential, respectively, due to the surface current on the :th

n

conductor. These potentials are not unique, as discussed in
[301, [26], [27]. In the latter reference, two different MPIE
formulations, referred to as the “traditional” and the “alter-
native,” are developed for arbitrarily shaped conductors in
layered uniaxial media.

The expressions for the dyadic kernel K* and the scalar
kernel K¢ comprise improper spectral 1ntegrals of the form

/ £ (ks)

-[C?Sk( m)]k”dk )

sin ky(z — )

S {f (s

where k,, is the Fourier transform domain counterpart of z, and
where the subscripts ¢ and s are associated with the cosine and
sine functions, respectively, and n assumes the values O or 1.
Using this notation, the nonzero elements of K 4 and K? for
the traditional MPIE formulation [31], [27] can be expressed as

KmAm(m Z|"E Z)— CO{ zmn( lzl)} (7)
KL (2,22, 2")

= ~homSu { ST o) = L1} ®
K2 (z,2|2',2)

—ﬂkonosco{ 12 T (212 = IE (2 |z/)]} ©)
K4 (z, 2|2, 2") |

= —jkm)oSsl{
KL (z,2)2',2")

= Bhomsof 4 V(21 = Vi 1} av

Kﬁz(w,zp:’,z')
_ B (Ko N e /
Gtm ( kp ) }I’U mn ZIZ)

- nOSCO {

V) = V(121 | 00

fhrm

€zn

ko \
+/1'7'm/4rn<k ) I»{;lmn(zlzl)} (12)
o
Kz, 2|2, 2")
= Seo{ g Wonnle12) = Vi 121 (13

where 79 and ko denote, respectively, the intrinsic impedance
and wavenumber of free space, and k2 = k2 + §°. The
subscripts m and n in the above indicate that the observation
point (z,z) is in the mth layer, and the source point (z/,2')
in the nth layer. In deriving (7)—(13), use has been made of
the transmission-line network analogue of the layered medium
[32, ch. 2], which is illustrated in Fig. 2 for a three-layer geom-
etry. This network actually represents two networks (having
identical configurations, but in general different propagation
constants and characteristic impedances) that arise from the
decomposition of the electromagnetic field into partial fields
that are transverse-magnetic (TM) and transverse-electric (TE)
to 2 [32], [33]. The superscript p in Fig. 2 stands for e or h,
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Fig. 2. Transmission-line analogue of a layered medium.
which designate, respectively, the quantities associated with

the TM and TE networks. The propagation constants of the
nth transmission line section are found as

kﬁn = \/k(%etn,uf'r‘n -

h __
kzn_

€tn
2
k2,

zZn

k3etnpirn — k2 (14)

where the branch of the square root is determined by the
condition that Im{%%,} < 0. The corresponding characteristic
impedances (and admittances) are given as

1 nokZ h_ 1 konopirn
ZE = __ = zZn Z = = =" 15
TTYe kot R A kh. (15)
In (7)~(13), V¥,,,.(2|) and I}, (2]2") denote, respectively,

the voltage and current at z on the mth transmission line sec-
tion, due to a 1 A current source at 2’ on the nth line section.
Similarly, V?,,,,(z|2) and IZ ,.(z|2") denote, respectively,
the voltage and current at z on the mth transmission line
section, due to a 1 V voltage source at 2z’ on the nth section.
These transmission-line Green’s functions are derived in the

Appendix for a medium with an arbitrary number of layers.

1. NUMERICAL METHOD

In this section, the method of moments [28], [29] is
employed to solve the MPIE (3) for the multiconductor
transmission-line problem of Fig. 1. As the first siep of
the numerical procedure, we approximate the cross section
contours of the conductors by piecewise linear segments, as
illustrated in Fig. 3. The arc-length coordinate ¢ will now
be associated with the approximated contours, instead of
the original ones. The method of moments requires that the
unknown currents be expanded in terms of a set of known
basis functions with unknown coefficients, viz:

Tl = 3D 1A,
J

JE(0) =" IPYIE(Y),  p=1,2,---,N. (16)
J

T2, Zj40)

(@j-1,2j-1) T;41sZj41)

(0,0)

Fig. 3. Linear segmentation model of a contour.

where
. -,
f?—(l/z) e—p“:-,%-l & <t<th
J i Rt
VAOERN .y amn
+1
’ [§+(1/2)ﬁ7 g<t<tt,
7+1 K )
0, otherwise
with
7 ,,.pﬂ -
£§+(1/2) - —]Z? 5 Al = - (18)
j+1
and
1, &£ . <e<?
gy _ , 3
1 (8 = {0, o]therwise. ! (19)

In the above expressions, the subscript j and the superscript
p signify quantities related to the jth expansion function or
segment on the pth conductor (the superscript p is omitted in
Fig. 3 for simplicity).

The MPIE (3) is next tested with II¥ and A}. In this
process, the transverse nabla operator in (3) is transferred
to operate on the testing function by applying Green’s first
identity, viz:

/Af(ﬂ) V®(z,z)dL

. / Ve - A2 (0)]8(z, 7) de
7/ [Hf(f) L0

T | B2 dl 20

p
Ai+1

To save computer time, the following approximations are used
in the testing procedure:

/ T2(6) [(€) df ~ DTS2 )
/ R0) F(0) dl ~ LBy oy ATFE_ )

+ §+(1/2)A?+1f(€f+(1/2))] (22)

where f(£) represents the scalar potential ®(z, z), or a com-
ponent of the vector potential A(z,z), and where £/ +(1/2) is

2y
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the arc-length coordinate of a point specified by the position
vector (cf. Fig. 3)

A+

IS ~ 1 1
"€+(1/z) = zxf+(1/2) + zzf+(1/2) = —Tt‘ 23)

Furthermore, when computing the magnetic vector potential
due to A’;, we approximate the resulting integral as

/ KAz, 2!, ') - AP(C) de'

~ %/g“l(m,zlx',z')
) + BT ()] d. (24)

As a final step, we substitute the expansions (16) into the
tested form of (3) to convert it into a homogeneous matrix
equation for the current expansion coefficients. Assuming, for
simplicity, that there are only two conductors, this equation
has the form

[lel tt] [le ty] [lej2 tt] [Z12 ty]
[Zzll yt] [legl,yy] [Z§2,yt] [le,yy]
2 120 1220 (12,
2" 1z 21”““’] Z;") [fo”“’]
[l1 ] [0]
Y 0
-
2
(Y] [0]
with the matrix elements given as
AP JAYS
R ,tt St i1
2 =S AT+ AT + =
1
(Af-tll—ftj A?—%lttj-%l) Aq ( (I'f-lll-l J)
1
Aq (‘D%ﬂ VY1 i) (26)
ZPI Az qu oy Az+1 Af-lfl—lti
+Jﬂ(<1>”" <I>fil,]) (27)
AY
ZPLYt _ (qu,yt +AP3_?+J_§)
AP
Jﬁ( - aben) e
ZPUVY — AP AVIVY _ G2 AP G (29)

where the index j, when used as a subscript, should not
be confused with the imaginary unit. in (26)—(29), we have
introduced the notation

E‘l
o [T 2 KA
A /eq 7K (l'f—(l/i))’zz‘p—(l/z)lx/7ZI)
2—1
qdl’ (30)
lq
o) = K*(a} 1~ (1/2) Fi- Tl ) de 3D

73

where (7,7) = (¢,y), and t = $(f) = 2§+(1/2) for £ < €<
£, 1. In the general case with N, conductors, the rnatn( in
(25) comprises 4V2 blocks of submatrices.

The kernel functions in the above have been defined by the
spectral integrals (7)-(13), which are evaluated by a composite
Gauss quadrature. To accelerate the convergence of these
integrals, we first subtract from the integrands their large
argument asymptotic forms. Furthermore, when |z — x| is
larger than |z — 2'|, we also employ the method of averages
[25], [34]. Finally, the closed-form integrals of the asymptotic
forms are added back to compensate for the subtracted terms.
The former explicitly exhibit their source-region logarithmic
singularities, which are integrable and are easily taken care of
in evaluating the kernel integrals (30)-(31).

The equation (25) has nontrivial solutions only for those
values of (3, which make the matrix determinant vanish.
These values are found by the Miiller method [35], and the
corresponding modal current coefficients are then determined
from (25).

IV. NUMERICAL RESULTS

In this section, we present sample numerical results for the
propagation constants and modal current distributions for a
variety of transmission-line configurations. In all examples
considered, the media are assumed lossless and nonmagnetic
(i.e., rn, = 1 for all layers). Some of the structures analyzed
comprise both uniaxial and isotropic dielectric layers. If a layer
is isotropic, its relative permittivity is denoted by €,. Only the
proper, bound modes, which propagate unattenuated with a
real propagation constant (3, are considered. The dispersion
curves are given either for 3/kq, or for the effective dielectric
constant e.g = (3/ko)?.

In Fig. 4, we present dispersion curves for a circular-wire
transmission line embedded in a grounded two-layer isotropic
medium with or without a top ground plane. The latter
configuration was first analyzed by Faché and De Zutter [21],
using an approach especially developed for wire conductors,
and their results are shown by square symbols in Fig. 4. In
this figure, €. is plotted versus the electrical thickness of
the substrate, d/)o, where \g is the free-space wavelength.
The wire is completely embedded in the dielectric slab for
h/d = 0.75 or 0.5, and in the air region when h/d = 1.25 or
1.5. In the analysis, the circular cross section contour of the
wire was approximated by sixteen linear segments of equal
length, We note that the results for B/d = oo (unshielded
structure) are indistinguishable from those for B/d = 10. This
is to be expected, since the field of the bound mode is mainly
trapped in the substrate and near the conductor. The presence
of the top ground plane presents a noticeable disturbance to
the bound wave only if it is close to the conductor or to the
dielectric interface.

In Fig. 5, we present dispersion curves for a three-conductor
microstrip transmission line, which supports three fundamental
modes. The dielectric is made of ceramic-impregnated teflon,
known as Epsilam 10, which is uniaxial, with ¢ = 13 and
€, = 10.2. As a check for the computer code, we have further
divided the dielectric slab into two layers. Two configurations
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Fig. 5. Dispersion curves for a three-strip microstrip transmission line.

have been analyzed, one without an air gap (h/d = 0), and
the other with an air gap (h/d = 0.04), and the corresponding
results are shown in solid and dashed lines, respectively. These
configurations have been previously analyzed by Kitazawa
[15], the first done by a full-wave method (square symbols),
and the second by a quasistatic approach (dotted lines). It is of
interest to note that a small air gap between the ground plane
and the dielectric slab results in big changes in the dispersion
curves. The longitudinal (transverse) current distributions for
modes 1, 2, and 3 are found to be even (odd), odd (even), and
even (odd), respectively.
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Fig. 6. Dispersion curves for a three-wire transmission line.

In Fig. 6, we present dispersion curves for a three-wire
transmission line embedded in a grounded dielectric slab,
which supports three fundamental modes. The solid lines
represent the results computed by Faché er al. [22] for the
case of an isotropic substrate (¢, = 4), whereas our results
for the same substrate are illustrated by the dotted lines. Note
that a logarithmic scale is used for the frequency. Our results
for a uniaxial substrate, where ¢, = 3.9 and ¢, = 4.1,
are indicated by three different symbols. As can be seen
from the figure, even this slight anisotropy has a noticeable
effect on the dispersion curves. In the isotropic case, all three
modes remain in the bound regime in the frequency range
considered. In the uniaxial case, mode 2 enters the leaky
regime [36] at a frequency between 30 to 40 GHz, above
which the dominant slab mode, indicated as TMg in Fig. 6,
is excited. The dispersion curve of the latter is obtained by
finding the zero of (34) (see the appendix). The longitudinal
and transverse modal current distributions at f = 10 GHz
are shown in Fig. 7. For modes 1, 2, and 3, the longitudinal
(transverse) currents are even (odd), even (odd), and odd
(even), respectively. Because of this symmetry property, we
only plot the currents on the left and center conductors. We
note that the longitudinal and transverse currents are in phase
quadrature, which is characteristic of bound modes on lossless
transmission lines.

We next consider three transmission line structures, which
differ in the cross section shape of the conductors, as illus-
trated in Fig. 8. The cross sections of the conductors are (a)
trapezoidal (which may arise as a result of an epitaxial growth
process), (b) rectangular (the ideal case), and (c) inverted
trapezoidal (which may be due to etching undercuts). The
dispersion curves for the three fundamental modes that each of
the three transmission lines may support are plotted in Fig. 9.
The longitudinal (transverse) current distributions for modes
1, 2, and 3 are found to be even (odd), odd (even), and even
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(odd), respectively. In Fig. 9, we also show the quasistatic
results obtained by Schroeder and Wolff [2] for the same
transmission lines, but having a finite-width substrate. We
observe that the dispersion curves for configurations (a) and
(b) differ less than those for (b) and (c). This is expected, since
in the former two geometries the conductor widths adjacent to
the dielectric slab (where there is a highly concentrated field)
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Fig. 9. Dispersion curves of modes 1, 2, and 3 for the transmission line
configurations (a), (b), and (c) of Fig. 8. The quasistate results of Schroeder
and Wolff are for a structure with a substrate of a finite width of 130 pm.

are the same. We also note that the quasistatic results of [2]
are very close to the low-frequency limits of mode 3 of our
results. However, it is not clear from [2] to which mode these
quasistatic values correspond.

In Fig. 10, we present dispersion curves for a two-strip
transmission line in an unshielded medium comprising both
uniaxial and isotropic layers (see the inset). Since there are
only two conductors and there are no ground planes in this
structure, we expect it to have only one noncutoff fundamental
mode (calied mode 1 in Fig. 10). Nevertheless, an additional
noncutoff mode (called mode 2) has been found. In addition to
the dispersion curves of these two modes, we also plot in Fig.
10 the dispersion curves of the first two slab modes (indicated
as TEg and TMy), computed from (34) of the Appendix. The
longitudinal currents of mode 1 on the two strips (not shown)
are found to be in different directions, whereas those of mode
2 are in the same direction. Hence, mode 2 is similar to the
fundamental mode of a coated conducting cylinder, where the
surface current on the circumference of the cylinder flows in
the same direction, and whose suitability as a single-conductor
transmission line was studied by Goubau [37]. A salient feature
of this Goubau mode is that its e.g is very close at low
frequencies to that of free space, and that its field is very
loosely bound to the dielectric. In fact, when we replace the
two strips in the configuration shown in Fig. 10 by a single
strip, we still can find a mode, which behaves similarly to the
aforementioned mode 2.

V. CONCLUSION

A mixed-potential integral equation (MPIE) formulation has
been implemented in conjunction with the method of moments
to compute the propagation constants and modal currents of a
multiconductor transmission line embedded in a laterally open
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Fig. 10. Dispersion curves for a two-strip transmission line in an unshielded
layered medium.

multilayered uniaxial medium. The approach is general and
flexible, and can handle both open and shielded structures. It
is applicable to conductors of arbitrary cross section, including
trapezoidal, which often arises in practice due to underetching
or as a result of the epitaxial growth process. Sample numer-
ical results have been presented for several transmission-line
configurations and, when possible, compared with available
published data, obtained by specialized techniques not easily
extendable to conductors of arbitrary cross section.

VI. APPENDIX
TRANSMISSION LINE GREEN’S FUNCTIONS

Consider a transmission-line network analogue of the lay-
ered medium of Fig. 1, formed by a tandem connection of
transmission line sections, each corresponding to a dielectric
layer (cf. Fig. 2). Let the network be excited by a 1 A current
source located at 2’ in the nth line section. Then, the voltage
and current at z within any line section, say the mth, satisfy
the transmission-line equations [32]

d‘/;pmn
3 = —]kgngzlzmn
i G2

where the propagation constant AZ,, and characteristic
impedance Z2, (and admittance Y2 ) have been defined in (14)
and (15), respectively. The superscript p, which stands for e
or h, as explained in Section II, will henceforth be left out
for brevity.

When m = n, i.e., the source and observation points are
within the same nth line section, the voltage V; ., is readily

| ]
I dy |
¢ *
I |
| |
Z’I’L—l | ZTL | ZTL+1
1A
kzn_1 : kzn : kzn+1
I I
+ +
Zn ’ 2 ndl — 2
— — - —
Z . F n Z [ 3) F'n
Fig. 11. Transmission line section containing a current source.

found from (32) as (cf. {32, p. 213], [26])
e—ikanlz—2|
2w,
1+ ?ne_%“('z"“_“)]

Vinn(2)2') = Zn [1+ T pe72kenlza—2n)]

(33)
where

Wy =1~ Tyl pei2kndn (34)

and z< = min(z, 2'), z> = max(z, 2’). In the above, ?n and
T—)n are the voltage reflection coefficients “looking to the left”
and “looking to the right,” respectively, at the two interior ends
of this line section, as illustrated in Fig. 11. These reflection
coefficients can be found as

—

N —

— VAN

Pp=—o—— (35)
—
Zn+ 2y

with the terminal impedances given by the recursive relations
—

(_ .
Z i1+ JZpt1tan (ky nt1dns1)

ntl S

=
Znt1 + J 7z nt1 tan (kz,n:f:ldn:lzl)

Z =

(36)

where the upper and lower signs correspond to the right and
left arrows, respectively.

For m # n, V; mn(2|2') is readily found from (32) and (33),
by enforcing the continuity of the voltage and current at the
interfaces. As a result, we obtain [26]

Vi (2ns12) T vimn(2),
n+l1<m<N
—
V;,nn(znlzl) T v,mn(z),
1<m<n-1

Vimn(2]2) = (37

where

—km(z—2m)
?v,mn(z) = €

1+ T,pe—i2kemdm
. [1 + —ﬁme—jZkzm(zm+1"'z)]

m—1 (1+_F_)Z)€—jk“dl

—_— .
i=nt+l 1+ T',e—i2k:ds

(38)
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e~ Tkzm(2mi1—2)

—
T o mn(2) = ——
1 -+ F me_]2kzmdm

14+ ?me‘jZkzm(z“zm)]
n—1 (1 1 T—i)e_jk“d’

pn
i=m+1 14+ T ;e792k=de

(39)

It is understood in the above that the product terms are equal
to one if the lower limits exceed the upper limits.

The transmission-line Green’s functions can be efficiently
implemented into a computer program, as explained below.
First, we recognized that (33) may be written as

— =
‘/;,nn(zlz,) = anl(n;z;zl§ | A Fn) (40)
which serves to define the function f;. The corresponding
current can then easily be found from the first of (32) as
L an(2]2") = £ fo(n; z; 25 :i:?n; :I:f)n),z =7 “0n
which defines the function fs. In a like manner, we may write
37) as
( e
fins2n41;2'5 Ty Ta)
—
falmin; 2 T jlneji<m)ls
m>n
— -
fin;zn; 2" Tny Ta)
—
falmin; 2 T lm<icm),
\ m<n

Vignn (212") = Zy, (42)

which defines the functions f; and f;. The corresponding
current can again be found from the first of (32) as

4 =
_fg('I’L; Zn+1; zI; T n; r n)

—
'f3[m;n;z; =T Ji(n(jﬁm)]a

. N — m>n
Iz,mn(z|z ) - ﬁ —fZ(n;zn;z/; ——(Fn; —_]_:‘_),n) (43)
—
L falmin; 2= T glan<y <))y
m<n.

The current I, ., and voltage V,, my, due to a unit-strength
voltage source in the nth line section, satisfy a set of equations
dual to (32). Hence, we may obtain these voltage and current
transmission-line Green’s functions from (40)—(43) by making
the substitutions V — I, ] — V, and Z — Y. Note that the last
substitution causes all reflection coefficients to change signs.
We observe that only four subroutines, corresponding to the
functions f; through f,, are required to implement all the
transmission-line Green’s functions in the computer code.
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