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Abstract— A mixed-potential electric field integral equation

is formulated and applied in conjunction with the method of
moments to analyze a transmission-line system consisting of
multiple conducting strips of arbitrary cross section embed-

ded in a stratified medium with or without top and/or bottom
ground planes. Each layer of the medium is possibly uniaxially

anisotropic, with its optical axis perpendicular to the dielectric

interfaces. Computed dispersion curves and modal currents are
presented and, when possible, are compared with data available

in the literature.

I. INTRODUCTION

R ECENT advances in integrated circuit technology have

made microstrips, striplines, coplanar strips, and similar

wave-guiding structures attractive not only in microwave and

millimeter-wave applications, but also in high-speed digital

computers. The conductors used as interconnects between

VLSI devices may be very close to one another, which

necessitates treating them as a single transmission line capable

of supporting several modes, rather than several isolated trans-

mission lines. The interconnects in modern microwave and

millimeter-wave integrated circuits tend to have trapezoidal

cross sections due to etching undercuts or as a result of

the epitaxial growth process [1], [2], and cannot always be

considered infinitely thin. These interconnects are supported by

a dielectric substrate, which often exhibits uniaxial anisotropy,

introduced in the manufacturing process [3].

Many numerical procedures have been successfully applied

in the past two decades to obtain frequency-dependent char-

acteristics of microstrips and striplines, but most of them

are only applicable to (or optimized for) planar conducting

strips of zero thickness (cf. [4], [5]–[ 17], to name just a

few). Relatively few papers have considered laterally open

micro strip structures with conductors of other cross section
shapes, such as rectangular [18], trapezoidal [19], [20], circular
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[21], [22], or rectangular with semi-circular edges [23]. The

concept of equivalent width has often been employed to

approximately take into account the strip thickness [24].

However, it has recently been demonstrated, using a rigorous

mixed-potential integral equation (MPIE) approach [19], that

the dispersion curve for a finite-thickness microstrip lies below

that of a microstrip with zero thickness, which is opposite to

what is observed when the concept of equivalent width is used.

In this paper, we use an MPIE approach, which was

originally developed for objects in isotropic media [25], [19],

[26], and recently extended to objects in uniaxial media [27],

to analyze a transmission-line system composed of multiple

conductors of finite thickness and arbitrary cross section,

embedded in a medium consisting of an arbitrary number

of planar, possibly uniaxially anisotropic, dielectric layers.

Computed dispersion curves and modal currents for bound

modes are presented and, when possible, are compared with

data available in the literature.

II. FORMULATION

The cross-sectional view of the structure under considera-

tion is shown in Fig. 1. The medium consists of lV planar,

homogeneous dielectric layers, with the interfaces parallel to

the Zy plane. Each layer, say the nth, is characterized by per-

meability Urn and by transverse and longitudinal permittivities

Ctn and ezn, respectively, all relative to free space. The top

layer of the medium may extend to +ca along the z axis,

or be shielded by a ground plane made of a perfect electric

conductor (PEC). Similarly, the bottom layer may extend to

—w along the z axis, or be shielded by a PEC ground plane.

There are IVc PEC strips embedded in the layered medium, all

uniform and of infinite extent along the g axis, but of arbitrary

cross section shape. An e~tit time dependence is assumed and

suppressed throughout.

Since we are interested in modes propagating in the y direc-

tion, we may assume that the phase factor e–ffly is common to

all the fields and currents, where ~ is the propagation constant

to be determined. Hence, we may express the surface current

density as

~(~) = ~(~)e–~py (1)

where 1 is the arc-length coordinate on the contours of the

conductor cross sections. By enforcing the condition that the
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conductor. These potentials are not unique, as discussed. in

[30], [26], [27]. In the latter reference, two different METE

formulations, referred to as the “traditional” and the “alter-

native,” are developed for arbitrarily shaped conductors in

layered uniaxial media.

The expressions for the dyadic kernel &A and the scalar

kernel K’f’ comprise improper spectral inte~rals of the form

●

●

● “[ 1

Cos k. (z – d) ~n dk

sin /cm(z – z’) Z n
(6)

24 A

d, 7(S,,,ez,,p,, where k. is the Fourier transform domain counterpart of $, and

t “ where the subscripts c ands are associated with the cosine and
‘Z3

d, (=,2, ‘5,2, I&z)
sine functions, respectively, and n assumes the values O or 1.

22 Using this notation, the nonzero elements of ~A and Ko for

d, (C,,,cz,, p,,) the traditional MPIE formulation [3 1], [27] cm~e expressed as

‘1 - L ——— ——— ——— —
(optional ground plane) - ~ ‘ .2’)= sc,{~:mn(zlz’)}KA(T ~1~, (7)

~:.(%‘zF,
Fig. 1. Cross-sectionat view of a multiconductor transmission line embedded ‘ ~’)

in a stratified uniaxial medium.
= –jkoqos,l”

{
w[l~mn(zlz) - I:,mn(zlz’)] 1 (8)

P

tangential electric field must vanish at the surface of the K@, Z[z’, z’)
conductors, we obtain an electric field integral equation (EFIE)

of the form = pkoqosco”
{

WII~mn(zlz) - I:mn(.z[z’)] 1 (9)
.7 0

7-e Ln, n=l,2, . . ..iVc

where ~ ‘J(x, zIz’, .z’), with z - z(l) and z - z(l), is the

electric-field dyadic Green’s function of the layered medium

[27], and where & denotes an outward unit vector normal

to the boundary L. of the nth conductor. In the above and

throughout, primed quantities denote source coordinates, unit

vectors are distinguished by carets, and dyadics by double

underlines.

The severe source-region singularity of the kernel of the

EFIE (2) makes it unsuitable for a direct application of the

method of moments [28], [29]. Hence, we first transform it

into the MPIE form,

Un x ~{A,(qz) + (V, - jjp)%(~, z)} = 0,
‘i=l

r~Ln, n=l,2, . . ..Nc (3)

where Ve is the transverse (to y) part of the operator nabla,

and where

Ai(x, .z) =
/

KA($,.zIz,‘ ,2’) . .J(/’) W’ (4)
L~ =

and

are the ~magnetic vector potential and the electric scalar po-

tential, respectively, due to the surface current on the zth

K#=(%4$,‘ z’)

= –jkor)os.l
{ }

*[vjmn(zlz) - v;,mn(21,z’)](10)
P

K;=(X, 213+, z’)

= p%oqosci)
{

%[vjmn(zlz’) - V;mn(Zlz’)]} (11)
P

K:(Z, Zpi, z’)

(12)

W+(Z, Z[z’, z’)

{
= Sco * [VJhw’) – W&r(212’)]} (13)

P

where qO and kO denote, respectively, the intrinsic impedance

and wavenumber of free space, and k$ = k: + @2. The

subscripts m and n in the above indicate that the observation

point (x, z) is in the mth layer, and the source point (z’, z’)

in the nth layer. In deriving (7)–( 13), use has been made of

the transmission-line network analogue of the layered meclium

[32, ch. 2], which is illustrated in Fig. 2 for a three-layer geom-

etry. This network actually represents two networks (having

identical configurations, but in general different propagation

constants and characteristic impedances) that arise from the

decomposition of the electromagnetic field into partial fields

that are transverse-magnetic (TM) and transverse-electric l(TE)

to 2 [32], [33]. The superscript p in Fig. 2 stands for e or h,
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Fig. 2. Transmission-line anatogue of a layered medium.

which designate, respectively, the quantities associated with

the TM and TE networks. The propagation constants of the

n,th transmission line section are found as

dk:. = k:%nprn-k; (14)

where the branch of the square root is determined by the

condition that Im{k;n } <0. The corresponding characteristic

impedances (and admittances) are given as

In (7)–(13), ~~nn(zlz’) and I?,,mn(zlz’) denote, respectively,

the voltage and current at z on the rnth transmission line sec-

tion, due to a 1 A current source at z’ on the nth line section.

Simik-ttiy, V<mn(zlz’) and l~,nn(zlz’) denote, respectively,

the voltage and current at z on the rnth transmission line

section, due to a 1 V voltage source at z’ on the nth section.

These transmission-line Green’s functions are derived in the

Appendix for a medium with an arbitraty number of layers.

III. NUMERICAL METHOD

In this section, the method of moments [28], [29] is

employed to solve the MPIE (3) for the multiconductor

transmission-line problem of Fig. 1. As the first step of

the numerical procedure, we approximate the cross section

contours of the conductors by piecewise linear segments, as

illustrated in Fig. 3. The arc-length coordinate ~ will now

be associated with the approximated contours, instead of

the original ones. The method of moments requires that the

unknown currents be expanded in terms of a set of known

basis functions with unknown coefficients, viz:

(o,o)

Fig. 3. Linear segmentation model of a contour.

where

with

In the above expressions, the subscript j and the superscript

p signify quantities related to the jth expansion function or

segment on the pth conductor (the superscript p is omitted in

Fig. 3 for simplicity).

The MPIE (3) is next tested with ~11~ and A!. In this

process, the transverse nabla operator in (3) is transferred

to operate on the testing function by applying Green’s first

identity, viz:

J

‘-/[ m(g) H:+l (q

A: – A;+l 1
Q(Z> z) Cu. (20)

To save computer time, the following approximations are used

in the testing procedure:

+ h2)~?+lf(~&/2))1 (Z2)

where ~(/) represents the scalar potential @(z, z), or a com-

ponent of the vector potential A(x, z), and where /~+(1,2) is
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the arc-length coordinate of a point specified by the position

vector (cf. Fig. 3)

Furthermore, when computing the magnetic vector potential

due to A;, we approximate the resulting integral as

/-
I@(z, +’,— i) . A;(l’) dl’

“ [?-(1 /2)~;(/’) + ~+(@;+l(~’)] all’. (24)

As a final step, we substitute the expansions (16) into the

tested form of (3) to convert it into a homogeneous matrix

equation for the current expansion coefficients. Assuming, for

simplicity, that there are only two conductors, this equation

has the form

(25)

with the matrix elements given as

73

where (T, ~) = (t, g), and ? s ~(l) = ~+(1/2) for l; < ~ <

$’+1 . In the general case with lVc conductors, the matrix in

(25) comprises 4iV~ blocks of submatrices.

The kernel functions in the above have been defined by the

spectral integrals (7)–( 13), which are evaluated by a composite

Gauss quadrature. To accelerate the convergence of these

integrals, we first subtract from the integrands their large

argument asymptotic forms. Furthermore, when Iz – z’ I is

larger than Iz – .z.’1,we also employ the method of averalges

[25], [34]. Finally, the closed-form integrals of the asymptotic

forms are added back to compensate for the subtracted terms.

The former explicitly exhibit their source-region logarithmic

singularities, which are integrable and are easily taken cam of

in evaluating the kernel integrals (30)–(31 ).

The equation (25) has nontrivial solutions only for those

values of /?, which make the matrix determinant vanish.

These values are found by the Miiller method [35], and the

corresponding modal current coefficients are then determined

from (25).

IV. NUMERICAL RESULTS

In this section, we present sample numerical results for the

propagation constants and modal current distributions for a

variety of transmission-line configurations. In all examples

considered, the media are assumed lossless and nonmagnetic

(i.e., /Lrn = 1 for all layers). Some of the structures analyzed

comprise both uniaxial and isotropic dielectric layers. If a layer

is isotropic, its relative permittivity is denoted by CT.Only the

proper, bound modes, which propagate unattenuated with a

real propagation constant ~, are considered. The dispersion

curves are given either for @/k., or for the effective dielectric

constant C.R = (fl/ko)2.

In Fig. 4, we present dispersion curves for a circular-wire

transmission line embedded in a grounded two-layer isotropic

medium with or without a top ground plane. The latter

configuration was first analyzed by Fach6 and De Zutter [21],

using an approach especially developed for wire conductors,

and their results are shown by square symbols in Fig. 4L In

this figure, C,ff is plotted versus the electrical thickness of

the substrate. d/ A., where ~. is the free-space wavelength.

The wire is completely embedded in the dielectric slab for

h/d = 0.75 or 0.5, and in the air region when h/d = 1.25 or

1.5. In the analysis, the circular cross section contour of the

wire was approximated by sixteen linear segments of equal

length. We note that the results for B/d = cc (unshielded

structure) are indistinguishable from those for B/d = 10. This

is to be expected, since the field of the bound mode is mainly

trapped in the substrate and near the conductor. The presence

of the top ground plane presents a noticeable disturbance to

the bound wave only if it is close to the conductor or tc~the

dielectric interface.

In Fig. 5, we present dispersion curves for a three-conductor

microstrip transmission line, which supports three fundamental

modes. The dielectric is made of ceramic-impregnated teflon,

known as Epsilam 10, which is uniaxial, with ct = 13 and

e. = 10.2. As a check for the computer code, we have further

divided the dielectric slab into two layers. Two configurations



74 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL, 41, NO. l, JANUARY 1993

1 1

h/d .

—
c1

~E
\

r/d=O.25

B/d B
o

r
&~= 1— m

------10 dh &r=4
.— 2.

0.75-

1.25-

1.5

1
~

o . 0.10

d/A.

Fig. 4. Dmperslon curves foracmcula-wire transmission line.

o

0!

1 r f

❑ on (h=O, Kitazawa, 1989) i

“- /’zzF1
-- (quasi-static forh=O.04d)

/
/

-< . . .

mode 3 ~,
_&r=l

E+.E.

&~=13, C,=1O.2 ~=\

o 0.05 0.10

2d\&

Fig. 5. Dispersion cuwesfor atkee-strip microstnp trmsmission line,

have been analyzed, one withoutan air gap (h/d=O), and

theother withan airgap(h/d=O .04), and the comesponding

results are shown in solid and dashed lines, respectively. These

configurations have been previously analyzed by Kitazawa

[15], the first done by a full-wave method (square symbols),

and the second by a quasistatic approach (dotted lines). It is of

interest to note that a small air gap between the ground plane

and the dielectric slab results in big changes in the dispersion

curves. The longitudinal (transverse) current distributions for

modes 1, 2, and 3 are found to be even (odd), odd (even), and

even (odd), respectively.
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Fig. 6. Dispersion curves for a three-wire transmission line.
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In Fig. 6, we present dispersion curves for a three-wire

transmission line embedded in a grounded dielectric slab,

which supports three fundamental modes. The solid lines

represent the results computed by Fach6 et al. [22] for the

case of an isotropic substrate (c. = 4), whereas our results

for the same substrate are illustrated by the dotted lines. Note

that a logarithmic scale is used for the frequency. Our results

for a uniaxial substrate, where q = 3.9 and c= = 4.1,

are indicated by three different symbols. As can be seen

from the figure, even this slight anisotropy has a noticeable

effect on the dispersion curves. In the isotropic case, all three

modes remain in the bound regime in the frequency range

considered. In the uniaxial case, mode 2 enters the leaky

regime [36] at a frequency between 30 to 40 GHz, above

which the dominant slab mode, indicated as TMO in Fig. 6,

is excited. The dispersion curve of the latter is obtained try

finding the zero of (34) (see the appendix). The longitudinal

and transverse modal current distributions at ~ = 10 GHz

are shown in Fig. 7. For modes 1, 2, and 3, the longitudinal

(transverse) currents are even (odd), even (odd), and odd

(even), respectively. Because of this symmetry property, we

only plot the currents on the left and center conductors. We

note that the longitudinal and transverse currents are in phase

quadrature, which is characteristic of bound modes on lossless

transmission lines.

We next consider three transmission line structures, which

differ in the cross section shape of the conductors, as illus-

trated in Fig. 8. The cross sections of the conductors are (a)

trapezoidal (which may arise as a result of an epitaxial growth

process), (b) rectangular (the ideal case), and (c) inverted

trapezoidal (which may be due to etching undercuts). The

dispersion curves for the three fundamental modes that each of

the three transmission lines may support are plotted in Fig. 9.

The longitudinal (transverse) current distributions for modes

1, 2, and 3 are found to be even (odd), odd (even), and even
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Fig. 7. (a) Longitudinal and (b) transverse current distributions at f = 10

GHz for the three-wire transmission line in the configuration of Fig. 6, with

et = 3.9 and e. = 4.1.
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(c)

Fig. 8. Geometry of ttrree transmission line configurations with conductors

of (a) trapezoidat, (b) rectangular, and (c) inverted trapezoidal cross section.
The dimensions are d = 120pm, W1 = 15pm, WZ = S = 10pm, and
t = 3pm.

(odd), respectively. In Fig. 9, we also show the quasistatic

results obtained by Schroeder and Wolff [2] for the same

transmission lines, but having a finite-width substrate. We

observe that the dispersion curves for configurations (a) and

(b) differ less than those for (b) ~d (c). This is expected, since

in the former two geometries the conductor widths adjacent to

the dielectric slab (where there is a highly concentrated field)

0.
F-r

0
<
w

m
c+

o

mode (structurt. .
?%:2%& wolf,, 198!3)

/
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o (b)
x (c)
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Fig. 9. Dispersion curves of modes 1, 2, and 3 for the transmission line

configurations (a), (b), and (c) of Fig. 8. The quasistate results of Schroeder
and Wolff are for a structure with a substrate of a finite width of 130 pm.

are the same. We also note that the quasistatic results of [2]

are very close to the low-frequency limits of mode 3 of our

results. However, it is not clear from [2] to which mode thlese

quasistatic values correspond.

In Fig. 10, we present dispersion curves for a two-strip

transmission line in an unshielded medium comprising both

uniaxial and isotropic layers (see the inset). Since there are

on] y two conductors and there are no ground planes in this

structure, we expect it to have only one noncutoff fundamental

mode (called mode 1 in Fig. 10). Nevertheless, an additional

noncutoff mode (called mode 2) has been found. In addition to

the dispersion curves of these two modes, we also plot in IFig.

10 the dispersion curves of the first two slab modes (indicated

as TEO and TMO), computed from (34) of the Appendix, ‘l%e

longitudinal currents of mode 1 on the two strips (not shown)

are found to be in different directions, whereas those of mode

2 are in the same direction. Hence, mode 2 is similar to the

fundamental mode of a coated conducting cylinder, where the

surface current on the circumference of the cylinder flows in

the same direction, and whose suitability as a single-conductor

transmission line was studied by Goubau [37]. A salient feature

of this Goubau mode is that its ~.ff is very close at low

frequencies to that of free space, and that its field is very

loosely bound to the dielectric. In fact, when we replace the

two strips in the configuration shown in Fig. 10 by a single

strip, we still can find a mode, which behaves similarly to the

aforementioned mode 2.

V. CONCLUSION

A mixed-potential integral equation (MPIE) formulation has

been implemented in conjunction with the method of moments

to compute the propagation constants and modal currents of a

multiconductor transmission line embedded in a laterally open
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multilayered uniaxial medium. The approach is general and

flexible, andcanhandle both open and shielded structures. It

is applicable to conductors of arbitrary cross section, including

trapezoidal, which often arises in practice due to underetching

or as a result of the epitaxial growth process. Sample numer-

ical results have been presented for several transmission-line

configurations and, when possible, compared with available

published data, obtained by specialized techniques not easily

extendable to conductors of arbitrary cross section.

VI. APPENDIX

TRANSMISSION LINE GREEN’S FUNCTIONS

z’~ z’ ‘zn+l —z

- & -+

Zn, rn -+
Zn, I’n

Fig. 11. Transmission line section containing a current source,

found from (32) as (cf. [32, p. 213], [26])

~–~~=nlz–~’l
~,nn(zli) = z. ~w [1+ Yne -j%+<-%)]

~[1 + 7.: –Zk=n(%+l-z>) 1 (33)

where

W. = 1 – ~n~ne–J2kznd~ (34)

+--
and z< ~ min(,z, z’), Z> E max(z, ./). In the above, r ~ and

~n are the voltage reflection coefficients “looking to the left”

and “looking to the right,” respectively, at the two interior ends

of this line section, as illustrated in Fig. 11. These reflection

coefficients can be found as

+
-+ Z. – Zn7.=+ (35)

?n+zn

with the terminal impedances given by the recursive relations

Consider a transmission-line network analogue of the lay- Zn+~ + j~n+~ tan (kZ,n*ldn+~)
ered medium of Fig. 1, formed by a tandem connection of

transmission line sections, each corresponding to a dielectric
where the upper and lower signs correspond to the right and

layer (cf. Fig. 2). Let the network be excited by a 1 A current
left arrows, respectively.

source located at Z’ in the nth line section. Then, the voltage
For m # n, ~,m.(zlz’) is readily found from (32) and (33),

by enforcing the continuity of the voltage and current at the
and current at z within any line section, say the rnth, satisfy

the transmission-line equations [32]
interfaces. As a result, we obtain [26]

where the propagation constant k~m and characteristic
?

impedance Z% (and admittance Y%) have been defined in (14) “~n(z) = e:’’-(zm)m)
I + r ~e–~zk.~drn

and (15), respectively. The superscript p, which stands for e

or h, as explained in Section II, will henceforth be left out ~[1 + ~ne –j2kzm(zm+l–z)
1

for brevity. ‘-1 (1+ 7Z)e-j~”’d’
When m = n, i.e., the source and observation points are II -+ (38)

within the same nth line section, the voltage Vi,nm is readily ~=n+l 1 + r ~e-J2k=d,
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F
~–jkzm(zm+l–z)

v,rrm(~)= _
1+ ~me–~2&n4n

. [1+ Fme-~2k”~(z-z~)]

It is understood in the above that the product terms are equal

to one if the lower limits exceed the upper limits.

The transmission-line Green’s functions can be efficiently

implemented into a computer program, as explained below.

First, we recognized that (33) may be written as

v~,nn(zli)= Znfl(n; z; z’; Y’n;TL) (40)

which serves to define the function f 1. The corresponding

current can then easily be found from the first of (32) as

which defines the function $2. In a like manner, we may write

(37) as

[

m Zn+li z’; r,,,-+”RJ
“.f3bww Z; r ~kn<j<m)l,

(42)

which defines the functions fs and jb. The corresponding

current can again be found from the first of (32) as

Ii,mn(zl~’) =
\

m>n+ (43)
–j’z(n; ,zn; z’; – rn; ‘Fn)

( m<n.

The current Iv, ~~ and voltage Vv,~n, due to a unit-strength

voltage source in the nth line section, satisfy a set of equations

dual to (32). Hence, we may obtain these voltage and current

transmission-line Green’s functions from (40)–(43) by making

the substitutions V ~ 1, I ~ V, and Z ~ Y. Note that the last

substitution causes all reflection coefficients to change signs.

We observe that only four subroutines, corresponding to the

functions .fl through ~A, are required to implement all the

transmission-line Green’s functions in the computer code.
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